Neutron scattering and monte carlo determination of the variation of the critical nucleus size with quench depth.
نویسندگان
چکیده
We have used a combination of neutron scattering experiments and Monte Carlo simulations to study the initial stages of first-order phase transitions. We focus on quenches wherein the nascent phase is formed by homogeneous nucleation, and we approach the spinodal, i.e., the quench depth at which the original phase becomes unstable. In this regime, we show how critical nuclei sizes are determined from neutron scattering structure factors. Prevailing thought is that the size of the critical nucleus should increase with increasing quench depth and diverge at the spinodal. To the contrary, our experiments and simulations indicate that the critical nucleus size decreases monotonically as quench depth is increased and is finite at the spinodal.
منابع مشابه
Monte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملThe influence of neutron contamination on pacemaker in photon beam radiotherapy by LINAC using the Monte Carlo method
Introduction: In radiation therapy with high-energy photon beams (E > 7 MeV) neutrons are generated mainly in LINACs head thorough (γ, n) interactions. These neutrons affect the shielding requirements in radiation therapy rooms. According to the protocol TG-34, photon absorbed dose of 10Gy can cause permanent damage to the pacemaker and the dose of 2Gy can make minor changes in...
متن کاملMonte Carlo and experimental relative dose determination for an Iridium-192 source in water phantom
Background: Monte Carlo and experimental relative dose determination in a water phantom, due to a high dose rate (HDR) 192Ir source is presented for real energy spectrum and monochromatic at 356 keV. Materials and Methods: The dose distribution has been calculated around the 192Ir located in the center of 30 cm ×30 cm ×30 cm water phantom using MCNP4C code by Monte Carlo method. Relati...
متن کاملAssessment of The Relation Between Energy Of Primary Protons And Undesired Neutron Dose During Proton Therapy By Monte Carlo Method
Introduction: High-energy beams of protons offer significant advantages for the treatment of deepseated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum -Bragg peak- near the end of range with a sharp fall-off at the distal edge. Alongside its advantages there are some point that they need to meticul...
متن کاملAssessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy
Background: One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment.Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Methods: Simulations were performed using MCNPX Monte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 8 شماره
صفحات -
تاریخ انتشار 2006